skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Zhengjin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Living tissues and some engineering materials contain water. When a wet material loses water, high triaxial tensile stress may build up and cause instability. The mechanism of instability under triaxial tension has attracted great attention, but quantitative study remains an ongoing chal- lenge. Here we develop an experimental method to apply well-controlled triaxial tensile stress and observe osmotic instability in situ. We synthesize a hydrogel in an elastomer tube with strong adhesion between them. The elastomer dissolves minute amount of water, but allows water to diffuse out and places the hydrogel under homogeneous, equal-triaxial, tensile stress. We develop a method to determine the stress as a function of time. The transparent setup enables observation of various types of osmotic instabilities, including cavity nucleation, crack propagation, and surface undulation. Notably, our method enables the measurement of crack speed from ~10−5 m/ s to a limit comparable to the Rayleigh wave speed ~1 m/s. We observe a large jump in crack speed at a critical energy release rate. This work opens opportunities to study the physics of soft materials under high triaxial tension. 
    more » « less
  2. Abstract Many living tissues achieve functions through architected constituents with strong adhesion. An Achilles tendon, for example, transmits force, elastically and repeatedly, from a muscle to a bone through staggered alignment of stiff collagen fibrils in a soft proteoglycan matrix. The collagen fibrils align orderly and adhere to the proteoglycan strongly. However, synthesizing architected materials with strong adhesion has been challenging. Here we fabricate architected polymer networks by sequential polymerization and photolithography, and attain adherent interface by topological entanglement. We fabricate tendon-inspired hydrogels by embedding hard blocks in topological entanglement with a soft matrix. The staggered architecture and strong adhesion enable high elastic limit strain and high toughness simultaneously. This combination of attributes is commonly desired in applications, but rarely achieved in synthetic materials. We further demonstrate architected polymer networks of various geometric patterns and material combinations to show the potential for expanding the space of material properties. 
    more » « less